Clinical Profile-Based Pharmacological Sequencing for Heart Failure with Preserved Ejection Fraction

Evandro Tinoco Mesquita,¹²,³,⁴ Eduardo Thadeu de Oliveira Correia,¹ Leticia Mara dos Santos Barbetta¹
Universidade Federal Fluminense,¹ Niterói, RJ – Brazil
Instituto Cardiovascular do Complexo Hospitalar de Niterói,² Niterói, RJ – Brazil
Centro de Educação e Treinamento Edson Bueno – UnitedHealth Group,³ Rio de Janeiro, RJ – Brazil
PROCEPI-DASA,³ Niterói, RJ – Brazil
6ª enfermaria Santa Casa,⁴ Rio de Janeiro, RJ – Brazil

Introduction

Heart failure (HF) is classically categorized into phenotypes according to left ventricular ejection fraction (EF), one of them being HF with preserved EF (HFpEF; EF ≥ 50%).¹ In the past decades, a myriad of drug therapies that reduce mortality and hospitalization rates for HF with reduced EF have emerged. However, although HFpEF accounts for about 50% of HF cases, to this date, only empagliflozin was shown to reduce HF hospitalization, and no drug reduced the risk for cardiovascular death in randomized clinical trials (RCTs).² One hypothesis that may explain the lack of therapies that reduce heart outcomes in HFpEF is the variety of phenotypes that constitute HFpEF as a syndrome.³ Thus, in this paper, we discuss evidence from RCTs and post-hoc analyses of RCTs that may help improve HFpEF outcomes, aid clinicians, and pave the way for future RCTs.

Clinical phenotypes of heart failure with preserved ejection fraction

HFpEF is a clinical syndrome arising from the interaction of multiple comorbidities that leads to an inflammatory state that produces cardiac and extracardiac abnormalities.⁴ Because of the diversity of comorbidities that can lead to HFpEF, this clinical syndrome is highly heterogeneous, which may explain why RCTs investigating a one-size-fits-all treatment have failed to reduce cardiovascular mortality among patients with HFpEF.⁵ Previous studies using machine-learning techniques have identified different phenogroups consisting of a combination of clinical features (pulmonary hypertension, lung congestion, atrial fibrillation, skeletal muscle weakness, and chronotropic incompetence),⁶,⁷ as illustrated in Figure 1. In addition to different clinical characteristics, these phenogroups have prognostic particularities and appear to respond differently to medical therapies.⁸ Therefore, classifying patients with HFpEF into phenogroups according to their clinical features could constitute a key aspect to guide medical therapy.

Evidence-based drug therapies for heart failure with preserved ejection fraction

As mentioned before, although there is a variety of drugs that improve outcomes for HF with reduced EF, this is not the case with HFpEF. One key step of HFpEF management is to treat etiologies and comorbidities (eg, hypertension, diabetes, coronary artery disease, obesity, anemia, chronic kidney disease, etc).¹ This may reduce not only disease progression but also HF hospitalization.¹ Regarding disease-modifying therapies, only empagliflozin is supported by robust evidence from an RCT to justify its use for HFpEF.² However, post-hoc analyses of RCTs indicate that other drug therapies may also reduce outcomes in HFpEF. This is mainly illustrated by the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial, in which spironolactone did not reduce the primary outcome in patients with HFpEF compared with placebo, although it was effective among patients with elevated natriuretic peptides.⁶,⁷ Also, surprisingly, patients in the Americas experienced an 18% risk reduction in the primary outcome, whereas in Russia and Georgia, spironolactone did not improve prognosis.⁸ A post-hoc analysis of the CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients (CHAMPION) trial also showed that changes in diuretic and vasodilator therapies according to pulmonary artery pressure reduced by 46% the incidence ratio of HF hospitalization in HFpEF with New York Heart Association (NYHA) class III.⁹ Therefore, this may indicate that diuretics may not only control HF symptoms but also reduce HF hospitalization. Finally, although the Prospective Comparison of ARNI with ARB Global Outcomes in HF with Preserved Ejection Fraction (PARAGON-HF) trial showed no benefit of sacubitril-valsartan for HFpEF, a prespecified analysis of this RCT showed that sacubitril-valsartan reduced the primary outcome in women with HFpEF due to a reduction in HF hospitalization.¹⁰ In Table 1, we detail phase III RCTs that have investigated pharmacological therapies for HFpEF.

Clinical profile-based pharmacological sequencing for heart failure with preserved ejection fraction

As reviewed above, in addition to etiologic treatment, there are 3 drug therapies that may benefit patients with HFpEF based on RCTs (empagliflozin), post-hoc analyses of RCTs (mineralocorticoid receptor antagonists), and indirect...
Risk Factors

- Diabetes
- Obesity
- Hypertension
- Coronary Artery Disease
- Kidney Dysfunction

Clinical Phenotypes

- Pulmonary Hypertension
- Chronotropic Incompetence
- Lung Congestion
- Atrial Fibrillation
- Skeletal Muscle Weakness

Figure 1 – Interaction of cardiometabolic risk factors that produce a complex combination of clinical features with consequent unique phenotypes of heart failure with preserved ejection fraction.

Table 1 – Phase III randomized controlled trials of pharmacological therapies for heart failure with preserved ejection fraction

<table>
<thead>
<tr>
<th>Study</th>
<th>Drug</th>
<th>LVEF Range</th>
<th>Other Inclusion Criteria</th>
<th>All-Cause Mortality</th>
<th>CV Mortality</th>
<th>CV Death or HF Hospitalization</th>
<th>HF Hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEP-CHF</td>
<td>Perindopril</td>
<td>LV wall motion index ≥ 1.4</td>
<td>Symptomatic HF treated with diuretics, diastolic dysfunction, age ≥ 70 years</td>
<td>1.09 (0.75-1.58)</td>
<td>0.98 (0.63-1.53)</td>
<td>NR</td>
<td>0.86 (0.61-1.20)</td>
</tr>
<tr>
<td>CHARM-Preserved</td>
<td>Candesartan</td>
<td>> 40%</td>
<td>NYHA class II–IV, history of CV hospitalization</td>
<td>NR</td>
<td>0.99 (0.80-1.22)</td>
<td>0.89 (0.77-1.03)</td>
<td>0.85 (0.72-1.01)</td>
</tr>
<tr>
<td>I-PRESERVE</td>
<td>Irbesartan</td>
<td>≥ 45%</td>
<td>NYHA class III–IV or NYHA class II with HF hospitalization in the past 6 months, age ≥ 60 years</td>
<td>1.00 (0.88-1.14)</td>
<td>1.01 (0.86-1.18)</td>
<td>0.96 (0.84-1.09)</td>
<td>0.95 (0.81-1.10)</td>
</tr>
<tr>
<td>PARAGON-HF</td>
<td>Sacubitril- valsartan</td>
<td>≥ 45%</td>
<td>NYHA class II–IV, left atrial enlargement or LV hypertrophy and elevated BNP ≥ 300 pg/mL or NT-proBNP ≥ 900 pg/mL or HF hospitalization in the past 9 months</td>
<td>0.97 (0.84-1.13)</td>
<td>0.95 (0.79-1.16)</td>
<td>0.87 (0.75-1.01)</td>
<td>0.85 (0.72-1.00)</td>
</tr>
<tr>
<td>TOPCAT</td>
<td>Spironolactone</td>
<td>≥ 45%</td>
<td>≥ 1 HF sign and ≥ 1 HF symptom, HF hospitalization within the past 12 months, or BNP ≥ 100 pg/mL or NT-proBNP ≥ 300 pg/mL, age ≥ 50 years</td>
<td>0.91 (0.77-1.08)</td>
<td>0.90 (0.73-1.12)</td>
<td>0.89 (0.77-1.04)</td>
<td>0.83 (0.69-0.99)</td>
</tr>
<tr>
<td>EMPEROR-Preserved</td>
<td>Empagliflozin</td>
<td>≥ 40%</td>
<td>NYHA class II–IV, 18 years or older, NT-proBNP > 300 pg/mL or NT-proBNP > 900 pg/mL for patients with HF and AF</td>
<td>1.00 (0.87-1.15)</td>
<td>0.91 (0.76-1.09)</td>
<td>0.79 (0.69-0.90)</td>
<td>0.73 (0.61-0.88)</td>
</tr>
<tr>
<td>DIG-PEF</td>
<td>Digoxin</td>
<td>> 45%</td>
<td>SR</td>
<td>0.99 (0.76-1.28)</td>
<td>1.00 (0.73-1.36)</td>
<td>0.88 (0.70-1.11)</td>
<td>0.79 (0.59-1.04)</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; CV: cardiovascular; HF: heart failure; LV: left ventricular; LVEF: left ventricular ejection fraction; NT-proBNP: N-terminal prohormone B-type natriuretic peptide; NYHA: New York Heart Association; S: sinus rhythm
evidence from RCTs (diuretics). Also, personalizing HFpEF treatment according to clinical presentation and presence of risk factors, similar to what is done in other syndromes, could benefit patients with HFpEF and seems to be a better option than focusing on a one-size-fits-all treatment. In Table 2, we suggest a pharmacological approach to treat patients with HFpEF according to their clinical presentation and risk factors, similar to that described by Shah et al. but in light of new evidence from RCTs and post-hoc analyses reviewed in this paper.

Perspectives
The heterogeneity of HFpEF as a syndrome may explain why all RCTs have failed to observe a significant reduction in cardiovascular mortality in this population. New RCTs selecting a specific population of patients with HFpEF with a unique set of clinical features and risk factors might reveal effective medical therapies to be adopted by HF guidelines. For instance, Park et al. demonstrated that, for patients with HF with EF > 40% and a global longitudinal strain < 14%, the use of beta-blocker therapy was associated with improved survival, while for those with a global longitudinal strain > 14%, the same was not true. However, the characterization of HFpEF phenotypes is under development, and there is still room for future large-scale multicenter studies using novel biomarkers and imaging techniques to better recognize HFpEF phenotypes.

Conclusions
Although HFpEF accounts for about 50% of HF cases, there is a lack of therapies that reduce cardiovascular death. Shifting from a one-size-fits-all approach to a clinical profile-based pharmacological strategy may be the key to produce a significant reduction in hard outcomes in HFpEF. However, although conceptually sound, this therapeutic model still needs to be validated by RCTs.

Author Contributions
Conception and design of the research, Analysis and interpretation of the data and Writing of the manuscript: Mesquita ET, Correia ETO, Barbetta LMS; Acquisition of data: Correia ETO; Critical revision of the manuscript for intellectual contente: Correia ETO, Barbetta LMS.

Potential Conflict of Interest
No potential conflict of interest relevant to this article was reported.

Sources of Funding
There were no external funding sources for this study.

Study Association
This study is not associated with any thesis or dissertation work.

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals performed by any of the authors.

Table 2 – Pharmacological strategy for heart failure with preserved ejection fraction according to clinical profile and risk factors. Clinical phenotypes and table adapted from Shah et al.

<table>
<thead>
<tr>
<th>Lung Congestion</th>
<th>Chronotropic Incompetence</th>
<th>Pulmonary Hypertension</th>
<th>Skeletal Muscle Weakness</th>
<th>Atrial Fibrillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>Diuretics/MRA/SGLT2i/ ARNI (for women)/caloric restriction</td>
<td>MRA/SGLT2i/ARNI (for women)/caloric restriction/atrial pacing</td>
<td>MRA/SGLT2i/ARNI (for women)/caloric restriction/PDE</td>
<td>MRA/SGLT2i/ARNI (for women)/caloric restriction/cardioversion or rate control/anticoagulation</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Diuretics/MRA/SGLT2i/ ARNI (for women)/caloric restriction</td>
<td>MRA/SGLT2i/ARNI (for women)/caloric restriction/atrial pacing</td>
<td>MRA/SGLT2i/ARNI (for women)/caloric restriction/PDE</td>
<td>MRA/SGLT2i/ARNI (for women)/caloric restriction/cardioversion or rate control/anticoagulation</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Diuretics/MRA/SGLT2i/ ARNI (for women), ACEi or ARB</td>
<td>MRA/SGLT2i/ARNI (for women), ACEi or ARB/atrial pacing</td>
<td>MRA/SGLT2i/ARNI (for women), ACEi or ARB/PDE</td>
<td>MRA/SGLT2i/ARNI (for women), ACEi or ARB/cardioversion or rate control/anticoagulation</td>
</tr>
<tr>
<td>Kidney Dysfunction</td>
<td>Diuretics/MRA/SGLT2i/ ARNI (for women)/ultrafiltration if needed</td>
<td>MRA/SGLT2i/ARNI (for women)/ultrafiltration if needed/atrial pacing if needed</td>
<td>MRA/SGLT2i/ARNI (for women)/ultrafiltration if needed/PDE</td>
<td>MRA/SGLT2i/ARNI (for women)/ultrafiltration if needed/cardioversion or rate control/anticoagulation</td>
</tr>
<tr>
<td>CAD</td>
<td>Diuretics/MRA/SGLT2i/ ARNI (for women), ACEi or ARB/ revascularization</td>
<td>MRA/SGLT2i/ARNI (for women), ACEi or ARB/ revascularization/atrial pacing if needed</td>
<td>MRA/SGLT2i/ARNI (for women), ACEi or ARB/ revascularization/PDE</td>
<td>MRA/SGLT2i/ARNI (for women), ACEi or ARB/ revascularization/cardioversion or rate control/anticoagulation</td>
</tr>
</tbody>
</table>

ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin II receptor blocker; ARNI: angiotensin receptor-neprilysin inhibitor; CAD: coronary artery disease; MRA: mineralocorticoid receptor antagonist; PDE: phosphodiesterase inhibitor; SGLT2i: sodium-glucose cotransporter 2 inhibitor.
References

