Is Salt Restriction Really Necessary in Patients with Acute Decompensated Heart Failure?

Luís Beck-da-Silva1–4 and Maurício Butzke1,4

Departamento de Medicina Interna da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS – Brazil
Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS – Brazil
Programa de Pós-Graduação em Ciências Cardiovasculares – UFRGS, Porto Alegre, RS – Brazil
Serviço de Cardiologia do Hospital Moinhos de Vento, Porto Alegre, RS – Brazil

Introduction

Heart failure (HF) syndrome was first described as an emerging epidemic almost 30 years ago. Due to population growth and aging, the total number of patients with HF has increased over the past years. Acute decompensated HF (ADHF) is estimated to be the leading cause of hospitalization, based on data available from 50% of the South American population.1

The standard treatment for patients with ADHF includes diuretics, vasodilators, and sodium restriction.

The recommendation of sodium restriction has been historically and heuristically based on sodium-related fluid retention and, in a patient with congestive HF, one would expectedly avoid anything that promotes fluid retention.

Therefore, sodium restriction has undoubtedly been the most frequently recommended self-care strategy for patients with ADHF.2

However, with the contemporary understanding of the pathophysiology of HF, in which treatments involve inhibition or activation of neuroendocrine systems, sodium restriction could have a negative effect on patients due to the activation of the renin-angiotensin-aldosterone system (RAAS), heart rate increase, and reduction in energy and protein intake, leading to cachexia.

This review aims to analyze the existing literature including both randomized and nonrandomized clinical trials on the effects of sodium restriction in ADHF.

Why may sodium restriction not be beneficial?

We, homo sapiens, have been “designed” to retain sodium. Our kidneys have long serpentinae, the loop of Henle, which has a complex and efficient mechanism of sodium retention. And thanks to this sodium retention capacity, particularly considering the mammals in the scale of evolution, we, human beings can live out of the water. Amphibians, for example, are not completely terrestrial as they have kidneys with a smaller loop, and hence a lower sodium retention capacity.3

Our sodium retention capacity is also due to the evolutionary development of the AARS. This system is particularly activated in situations that cause renal hypoperfusion, including dehydration, bleeding, burns, and as we know, HF. Today, thanks to four decades of advances in the understanding of HF, it is known that interventions that inhibit the RAAS are proven to be beneficial. These include angiotensin-converting-enzyme inhibitors (ACEI),4 angiotensin receptor blockers (ARB),5 aldosterone inhibitors (spironolactone and eplerenone),6 betablockers (indirectly),7 and angiotensin receptor-neprilysin inhibitor (ARNi).8

On the other hand, situations that activate the RAAS are proven to be harmful to HF patients. These include severe hypovolemia, hypotension, erythropoietin,9 adrenaline (indirectly),10 and furosemide.

In this balance between benefits and harms, we must consider that sodium restriction acts as an activating factor of the RAAS, whereas sodium administration acts as an inhibitor factor of the system.11 Thus, in an era in which HF treatment is based on neurohormonal systems, interventions that activate the RAAS, such as sodium restriction, may be deleterious (Figure 1).

Analysis of the best available evidence

We selected studies that evaluated the effect of interventions for sodium intake (e.g., low sodium intake) for patients aged ≥ 18 years, admitted for treatment of ADHF.

Studies that evaluated sodium intake as a continuous exposure (i.e., not prescribed), studies conducted in the emergency department (without admission) and those without a control group were not included. We searched for peer-reviewed articles in Medline (via PubMed), Embase, ClinicalTrials.gov, CINAHL and Cochrane Database of Systematic Reviews until August 2023. Using these criteria, five clinical trials were analyzed and compared (Table 1).

Conclusions

To date, five studies (four clinical trials and one nonrandomized), with a total of 411 patients, compared a sodium-restricted diet with a high-sodium diet (unrestricted in four studies) in patients admitted with ADHF. Currently
Salt Restriction in ADHF

Figure 1 – Factors that lead to inhibition or activation of the renin-angiotensin-aldosterone system (RAAS) in patients with acute decompensated heart failure.

ACEI: angiotensin-converting-enzyme inhibitors; ARB: angiotensin receptor blockers; ARNi: angiotensin receptor-neprilysin inhibitor.

Table 1 - Summary of the results of the mains studies on dietary sodium restriction in patients with acute heart failure available until August 2023

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>N</th>
<th>Randomized</th>
<th>Centers</th>
<th>Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velloso et al. 12</td>
<td>Brazil</td>
<td>Intervention: 14 Control: 18</td>
<td>Yes</td>
<td>Single-center</td>
<td>NYHA: III - IV, Boston criteria ≥ 8, EF ≤ 45% Less than 36h of hospitalization for randomization Age ≥18 years</td>
</tr>
<tr>
<td>Aliti et al. 13</td>
<td>Japan</td>
<td>Intervention: 38 Control: 37</td>
<td>Yes</td>
<td>Single-center</td>
<td>NYHA: II-IV, Median BNP = 856 pg/mL</td>
</tr>
<tr>
<td>Inuzuka et al. 14</td>
<td>Brazil</td>
<td>207</td>
<td>No</td>
<td>Non-available</td>
<td>EF ≥50%, Age ≥18 years; clinical signs of congestion, dyspnea, orthopnea in the last week, BNP > 100 pg/mL</td>
</tr>
<tr>
<td>Machado d’Almeida et al. 15</td>
<td>Brazil</td>
<td>Intervention: 30 Control: 23</td>
<td>Yes</td>
<td>Single-center</td>
<td>Framingham criteria, Age ≥18 years</td>
</tr>
<tr>
<td>Fabricio et al. 16</td>
<td>Brazil</td>
<td>Intervention: 22 Control: 22</td>
<td>Yes</td>
<td>Single-center</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean age (years)</th>
<th>NYHA</th>
<th>LVEF (mean)</th>
<th>Intervention</th>
<th>Control</th>
<th>Intervention duration</th>
<th>Follow-up duration</th>
<th>Primary outcome</th>
<th>Difference in the primary outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>III-IV</td>
<td>34,8</td>
<td>Sodium-restricted diet (2 g/day)</td>
<td>Norma-sodium diet (10 g/day)</td>
<td>7.5 days (median) for the intervention group and 6.6 days (median) for the control group</td>
<td>Not available</td>
<td>Clinical improvement</td>
<td>No</td>
</tr>
<tr>
<td>60</td>
<td>III-IV</td>
<td>26</td>
<td>Sodium-restricted (0.8 g/day) and fluid-restricted (800 mL/day) diet</td>
<td>Diet with no restrictions</td>
<td>6 days (median)</td>
<td>30 days</td>
<td>Weight loss and clinical stability in three days, thirst sensation, hospital readmission in 30 days</td>
<td>Increase in thirst sensation</td>
</tr>
<tr>
<td>79</td>
<td>II-IV</td>
<td>Not available</td>
<td>Sodium-restricted diet (6 g/day)</td>
<td>Norma-sodium diet (10 g/day)</td>
<td>Not available</td>
<td>Not available</td>
<td>Energy intake</td>
<td>Low energy intake in the group with sodium restriction</td>
</tr>
<tr>
<td>72</td>
<td>II-IV</td>
<td>61</td>
<td>Sodium-restricted (0.8 g/day) and fluid-restricted diet (800 mL/day)</td>
<td>Diet with no restrictions</td>
<td>5 days (median)</td>
<td>7 days</td>
<td>Weight loss</td>
<td>Lower energy-protein intake in the group with sodium restriction</td>
</tr>
<tr>
<td>58</td>
<td>Non-available</td>
<td>29</td>
<td>Sodium-restricted (3 g/day) and fluid-restricted (1000 mL/day)</td>
<td>Norma-sodium (7 g/day), fluid-restricted diet (1000 mL/day)</td>
<td>7 days</td>
<td>7 days</td>
<td>Difference in serum sodium</td>
<td>Yes</td>
</tr>
</tbody>
</table>

EF: ejection fraction; BNP: brain natriuretic peptide; LVEF: left ventricular ejection fraction
available evidence allows us to conclude that a sodium-restricted diet:

1. Did not have a significant impact on symptoms (clinical congestion score and HF symptoms), on the dose of diuretics prescribed during hospitalization, on the hospital length of stay, or on readmission within 30 days;
2. Did not have a significant impact on intermediate outcomes like serum creatinine, urea, brain natriuretic peptide, diuresis, serum aldosterone or plasma renin activity;
3. Caused a significant reduction in energy intake as compared to an unrestricted diet;
4. Did not provide enough data to draw conclusions about mortality.

Author Contributions

Conception and design of the research, Acquisition of data and Writing of the manuscript: Beck-da-Silva L; Analysis and interpretation of the data: Butzke M; Critical revision of the manuscript for important intellectual content: Beck-da-Silva L, Butzke M.

Potential conflict of interest

No potential conflict of interest relevant to this article was reported.

Sources of funding

There were no external funding sources for this study.

Study association

This study is not associated with any thesis or dissertation work.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

References